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INTRODUCTION

A SAMPLING TECHNIQUE frequently used in chemical and physical
analyses for estimating the mean of a population is that of multiple
random subsampling, called nested sampling by P. C. Mahalanobis.’
For instance, when determining the moisture content of cheese, a food
chermist might wish to select his samples randomly from different lots,
and again from different cheeses of each lot, and finally make duplicate
determinations on each cheese. A primary objective in the statistical
design of such a sampling procedure is to minimize the cost of obtaining
the sample estimate if the desired degree of precision is fixed, or con-
versely, to maximize the precision of the estimate obtained from a
given amount of expenditure including personnel, time, and equipment.
The question arizes as to how the number of sampling units at each
level should he determined to meet these optinoum requirements assum-
ing equal frequencies in the subelasses.

It iz assumed in this paper that at each classification level, the cost
iz proportional to the number of units sampled at this level, and that
the cost per sampling unit is known. Thus the total cost is a linear
funetion of the numbers of sampling units at the various levels, with co-
efficients representing the (known) costs per sampling unit at, these levels.
On the other hand, the precision of the mean yielded by the experiment
can be expressed in terms of the variance of this sample mean; it will
then alzo be a linear funection of the variances corresponding fo each
level, with coefficients involving the reciprocals of the number of units
at the various levels. If the variances at the various levels are not
known, they should be estimated from a preliminary experiment. The
present paper discusses optimum allocation of the sampling units in
nested sampling in terms of 3 levels. As an illustration of an experi-
mental situation, a numerical example is given invelving the estimation
of varlance components. In the appendix, the formulas for optimum
allacation in nested sampling with k levels are derived.

1Far reference zee M. Ganguli’s paper on Nested Sempling [7).
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For concreteness, we consider the above mentioned specific problem
of planning in the most economical way an experiment in food chemistry
designed to determine the moisture content of cheese, the subsampling
levels involving lots, cheeses, and determinations. Clearly, the princi-
ples elucidated in terms of this particular problem for 3 levels are
applicable to a wider class of problems involving more levels in sub-
sampling, as, for instance, by expanding this simplified experiment to
more than one factory. Also, they may be applied to other than
chemical investigations involving nested sampling, for instance: in the
determination of the breaking strength of a certain type of bronze, a
metallurgist may wish to choose random samples from different ladles,
then again from different molds of each ladle, and make duplicate de-
terminations on the samples from each mold; in a manufacturing process,
the subsampling categories may be lots, bags, and batches; in a gunnery
experiment, test shooting may he done by different operators taking
a, number of observations on different runs; in agricultural investiga-
tions, the entire area under survey may be subdivided into a large
numbher of zones, these in turn into a large number of smaller zones,
and s¢ on; in studies of spray deposit in inseet waork, plots, trees, and
apple samples have heen used as subsampling levels [2]. Examples of
nested sampling 1n biological and mdustrial work together with analyses
of variance components may be found in G. W. Snedecor’s [10] and
L. H. C. Tippett’s [12] books. In designing a sample survey for esti-
mating the jute crop in India, P. C. Mahalanobis (3] has used the cost
function for considerations of optimum allocation and discussed their
general application to large scale sample surveys; principles of optimum
allocation in nested sampling have been used by M. H. Hansen et al.
[8] in a sample survey of business involving 2-fold nested sampling
from finite populations (countries, stores), and by L. H. C. Tippett [12]
who describes an experiment wheve in obtaining soil samples from
counts of eysts, a number of “borings’” of soil were talen and then
several counts made on each boring.

DEFINITION OF NESTED SAMPLING

The problem considered is one in which the total population is sub-
divided into primary sampling units (lots); these in turn are subdivided
into secondary sampling units (cheeses) on which several measurements
(determinations) are made representing the tertiary sampling units.
The nested sample is obfained by selecting at random first n; primary
(lots), then n, secondary {cheeses), and finally n, tertiary sampling
units (deteyminations) from each of the preceding units, where #, , n, |
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#, Yepresent the class frequencies. A measure of the variance of the
sample mean in terms of the class frequencies iz desired. Before de-
riving it, the structure of the mathematical model will be explained.

Let #,; denote the j-th determination from the i-th cheese of the
h-th lot. Assuming that the effects of the sampling units at the different
levels are additive, we may describe an individual observation z,; in
nested sampling (7] as:

iy = g+ &+ e+ Cnas (1)
h=1,2 ---,n, where hrefers to the lot of cheese

i=1,2 ---,n, where ¢ refers to the cheese in each lot
i=1,2 ..., n, where j refers to the determination on each cheese.
The value g represents the general population mean and is thus a fixed
constant. The components £, , %, , (w; are random variables with
means and covariances equal to zero and with varlances equal to
ar , a5 , o3 , Yespectively, called variance components. Thus the com-
ponents £, , n, , {ay represent the effects peculiar to the lots, cheeses,
and determinations, and the variance components the variabilities at
the different levels,

1 1

VARIANCE OF SAMPLE MEAN AND ESTIMATION OF VARIANCE COMFPONENTS
IN NESTED SAMPLING

From the definition of an individual observation w.; in nested
sampling, given hy equation (1), we have for the sample mean

L hi2 Ha i Ha iy
DI DD IL MDD DD WL
- = h=1 4= =1 i=k §=
r=pu -+ —‘—nl -+ ey -+ o (2)

Then hecause of the assumptions made for the random variables £, ,
Tai » {aey We obtain for the variance of the sample mean
1 2 2
PR G SR i 3)
By TR, Myfiaf

This expression gives the variance or precigion of the sample mean as a
linear funetion of the reciprocals of n, , 7,1, , and n,n.n; representing
the total number of lots, cheeses, and determinations used. The co-
efficients are the variance components o7 , 3 , 65 , being the variances
encountered at the 3 suhsampling levels.

As long as the parameter values a7 , o3 , a5 are unknown, the variance
function 43 in (3) cannot be used for solving the problem to determine
the optimum values of the class frequencies. On the other hand, if a
get of class frequencies were given and used in performing ah experiment
in nested sampling, then the unknown parameters o; , a3 , o3 conld
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be estimated from an analysis of variance of the experimental data.
This dilemma® may be evaded by first carrying out a preliminary ex-
periment in nested sampling® using a set of arbitrarily chosen class

TABLE 1
ANALYSIS OF VARIANCE IN 3-FOLD NESTED SAMPLING
Degrees of Mean Expected

Souree of Variation freedom Square Mean Square
Primary sampling units n¥ — 1 MS, |ob + nle) + nin¥e
Becondary sampling units

within primary units n¥mi — 1) MS, o3 + nial
Tertiary sampling units

within secondary units| nfnfiny — 1) | MS, o3

frequencies. We will show how the data obtained from such a pre-
liminary esperiment give advance estimates of o} , 63 , o3 , say s ,
53, 82, to be used far estimating the coefficients of the variance fune-
tion.

Denate by n, n#, nf the given class frequencies of the preliminary
experiment in nested sampling. Perform a customary analysis of
variance on the observed data, as shown in the first 3 columns of tahle 1,
where M8, |, MS, , and M S, denote the mean squares corresponding to
the primary, secondary, and tertiary sampling units. It can be shown
that the expected values of the mean squares M8, , MS, , and M S; are
the expressions shown in the last column of table 1. Considering the
estimater of these expressions by substituting the estimated variance
components s; , 53 , 83 , we obtain the equations

M8, = & + nlss + ninis
M8, = s + nisi (4)
ﬂfs‘g = 83

iBee M. Friedman's discussion of a similar situation in planning an experiment ([11], p. 343).

301 a mixed model design of experiment (e.g. randamized blocks or aplit plat) which ineludes the
subsampling categaries under consideratinn,  Note that such 2 design might invelve mare degrees of
freedom this increasing the reliahility of the estimated varianee components ([3], [4]).

sResults far any nuuber of sub-samplings and unequal frequencies are given by M. Ganguli [7].
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Whence we have the solutions

a __ ﬂ.{Sf_\ - ﬂf{83
ny (5)

., MS, — MS,
= ning

in which the estiimated variance components are expressed in terms of
the rean squaves caleulated in the analysis of variance table of the
experimental data from nested sampling.’® These equations can be
extended fram three to & subsamplings by the same reasoning.

OPTIMUM ALLOCATION IN 3-FOLD NESTED 8AMPLING

Thsa variance of the sample mean and the total cost expenditure for
determining it, expressed in terms of the class frequencies, are the two
funections needed for solving the optimum allocation problem under
consideration. Considering the case of 3 levels, let C{n, , %, , n3) be the
cost funetion and V{n, , n, , n;) the variance function, the variables
1 , N, %y epresenting the class frequencies. As given by equation
(6), the cost funetion Cln, , 7, n3) is assumed to be an additive funetion
of the costa at the three levels, that is the costs of n, primary, n,n,
secondary, and n,%.n; tertiary sampling units altogether, the cost per
primary, secondary, and tertiary sampling unit being ¢, , ¢ , and ¢
respeetively. The variance funetion Vin, , n, , ns) is given by equation
(3) showing the variance of the sample mean, ¢2, in 3-fold nested
sampling; its parameters may be estimated from the data of a pre-
liminary experiment by the analysis of variance procedure for esti-
mating variance components as deseribed above. Thus we have:

Clny 1y, ) = ey + Calatly + CaMNaMa (6)
& 2 s
ﬂ o _._.0.3

Ving , ne , ng) =
s a5 o) 0y NAe AR,

@)

The prohlem of optimum allocation is to minimize C{n, , %, , n;) by
proper choice of 5y |, s, #a subject to the canstraint that the allowable

sThis analysia of the variance components was performed on data from nestéd sampling, whish
is = apegial case of Madel IT analysis of varianes as shawn helaw, If 3 similar analysis of variance
compapents is rauwtinely carried oyt an data belonging to Model [, the mterpretation differs. In
Model 1T, the camputed variance eompanents estimate the variances it | a2, 0y? associated with ran-
dom factors, whereas in Model 1, these are dummy syimbals representing suins of syuares of difierences
related ta the varintion of systematic (or fAixed) fasatars ([L], [3]).
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amount of variance is preassigned, say v, or to minimize V(n, |, 1y , ng)
by proper choice of n, , n, , n; subject to the constraint that the total
amount of cost is fixed, say e. Let fig( , fga , feg aNd Ry, , Rps , Ay De
the optimum solutions of the two problems respectively. By applying
Lagrange multipliers it can he shown® that these optimum values of
Ty, Ta , Ty AT

{Z; (Jc \/C_t)

By = a
o1 " ‘\/01
] C_l
flos = — 4= 7
a2 ay JCg ( )
i G2
nes = 1[0
a3 Ta \‘Cs
o 7 ¢
s Bl 3 Y
z (0'1' \/Ci) \/Cl
i=1
o,
ny = 42 ®)
H 2

oz j6y

By = Ta \/C:a
The sets of equations (7) and (8) show similar featuwres. Exeept
for the first level, the optimum combination of the number of sampling
units is independent of the given degree of precision or the fixed total
cost, being the same whether the precision or the amount of cost is
assigned beforehand. Therefore, when planning an experiment in
nested sampling the analyst need be concerned with the given cost or
precision only in selecting the number of primary sampling units.
Clearly, an increase in funds would be utilized most efficiently, that
is resulting in the highest possible precision, hy a proportional increase
in the number of primary sampling units, and similarly, the most
economical way for attaining a higher degree of precision would eonsist
in choosing a correspondingly greater number of primary sampling

units,

In many instances, the research analyst might not wish to depend

s3¢e appendix for development of these formulas,
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on considerations of optimum allocation in the choice of the frequencies
at all levels, but might prefer to take, for instance, duplicate or triplicate
determinations from each cheese for check purposes, thus preassigning
the class frequency associated to the teriiary sampling unit, a, . If
1, is prefixed, the corresponding optimum allocation formulas’ are

[ai Ve + \f (a + i—)(c + o.;-m)}

¢ T
oL —
v ‘\/CL
. (9)
0‘2
JiE e
at, = 4 Ma S
G 2} Lo + Catlyg
in the case that the variance » is given; and
f L] C
— Q@
a Ve
[G’i \/C1 + \/(o‘i 4+ 5)({29 4 C3?Lﬂ}]
A
B (10)
0'2
el
Hlw = _‘___?%_1\/ €
w2 =
a €2+ €afta

in the case that the total cost ¢ is given.

NUMERICAL EXAMPLE

The figures shown in table 2 are results from analyses of samples
of cheese for the determination of moisture content.® They will serve
ag the preliminary data for obtaining estimates of the variance com-
ponents. The experimental set-up in nested sampling involves duplicate
determinations made on 2 cheeses from each of 3 lots, the different
cheeses and the different lots being randomly selected (n¥ = 3, n¥ =
2, n¥ = 2.

The first 4 columns of table 3 show the results of an analysis of
variance of these data. In nested sampling the sums of squares may
be caleulated as follows: Consider first table 2 (in which there arve 3
factors: duplicates, cheeses, and lots) and refer to the figures, repre-
senting 1 determination, as “totals.” Subsequently, obtain the totals

Bee appendix for development of formulas 1n which all but the Arst & are fieed.

tThe data are drawn from “HRepart on Bampling Fat and Meisture in Cheese” by William Horwitn
and Lila F, Knudsen, J. Ass. Off. Agr. Chen., vol, 31 (1948, pp. 300-306; slight modifertions have
heen made for illustrative purposes. The author acknawledges the sugzestions of Lila F. Kuodsend
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TABLE 2

MOISTURE CONTENT OF 2 CHEESES FROM EACH OF 3 DIFFERENT LGTS,
DETERMINED 2 TIMES

Lat
Cheese
1 1I III
1 39.02 3h.74 37.02
38.79 35 41 36 .00
2 38.96 35.58 35.70
39.01 35.52 36.04

for the duplicates on each cheese (there remain 2 factors: cheeses and
lots), and also the tofals of the 4 determinations on each lot (theye
remaing 1 factor: lots), in addition to the total for the entire table (no

TABLE 3

ANALYSIS OF VARIANCE OF DATA ON MOISTURE CONTENT OF CHEERE
GIVEN IN TABLE 2

Souree aof Degtees Sum of Mean Grpected Estimated
WVariatian af Squares Bguare Maan Sguare Variance
Treedam Coamponents
Lots 2 88 = 23.9001 | M5 = 12 9300 | e1? + 29?4 4m? | &2 = 3.2028
Cheeses
within lots 3 S8 = 4166 | MS = 1388 | oxt 4 2ot ml = (143
Determinations
within glieesns G S88: = 6620 | MS = 1103 | o nt = 1143

factor remains). Denote by @, , €., €, , and @, the sum of squares of
these corresponding totals divided by the number of determinations
making up each total:

Q. = 39.02° + 38.79* + .- 4 35.70° 4 36.04” = 16,365.5607
0, = 77.817 + 77.97° + 71.15° + 71.10° 4 73.02" + 71.74

z } 2

= 16,36G4.8088
a 2 Ed
0, = 185.78" + 142425 1476 ey 4501
I 2

Q = ¥ _ 16,338.5820

12
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Then the sums of squares in analysis of variance, 88, , 88, , 88, , are
the suceessive differences of these expressions:

85, = @, — @, = 25.9001
SSZ = Q2 - Ql = 0.4166
SSa = Qa - Qz = 0.66209

The sums of squares and the corresponding mean squares are shown
in columns 3 and 4 of table 3. The estimated variance components
st , 2, 8, shown in the lagt column of table 3, follow from equations
(5}). These values represent the advance estimates from the pre-
liminary data to be used in the planning of the experiment.

The prohlem of designing an experiment with optimum allocation
may arise in chemical laboratory work, e.g., when it is desired to set
up in the most economical way routine analyses of samples of cheese
far the determination of moisture content. In the example under
consideration we assume that the chemist wants to spend not more
than 60 dollars altogether to he allocated in such a way that the highest
precision results; that he requires duplicate determinations for check
purpeses; and that the cost factors per lot, cheese, and determination
are 13, 3, and 1 dollar respectively. Since these requirements prefix
the class frequency n; and the fotal cost €, formulas (10} are appro-
priate. Substifuting n, = 2, ¢ = 60,¢, = 10, ¢ = 3, and ¢; = 1, and
for the variances a7 , o3, o3 their estimates s; = 3.2028, s; = 0.0143,
$5 = 0.1103, we obtain: '

‘?‘L{;l = 5<43 n{.rg - 0.21

The corresponding integer values have to be chosen in accordance with
the conditions of the experiment. Since n, , the number of cheeses
selected from each lot, must be at least one, the number of lots, 5, ,
may be reduced. An examination of the integers smaller than nb,
shows that n, = 4 together with n, = 1 fulfill the required conditions.
Thus 4 lots and 1 cheese give the optimuym solution for the problem
under congideration.

The merit of this optimum combination may be judged by com-
paring it to other combinations of class frequencies. In table 4 a
number of various combinations (columng 1 and 2) are presented
together with the precision of the sample mean (columns 5 and 6) and

sing the Agures given for s, Qs ahove, we have )3 — G = 6619 instead of .B620. Sich g dif-
ference in Lthe last desimal place i due to raunding off results, intermediate camputations being carried
aut to maove desimal places,
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TABLE 4
ESTIMATED PRECISION AND COST OF DETERMINING MOISTURE CONTENT OT
CHEESE WHEN A SPECIFIED NUMBER OF LOTS () AND A SPECIFIED NUMBER OF
CHEESES FROM EACH LOT {n:] ARE USED AND TWOQO DETERMINATIONS (n = 2)
ARE MADE ON EACH CHEESE. CONSTANTS TJSED ARE ADVANCE ESTIMATES CAL-
CULATET FROM PRELIMINARY DATA (TABLESR 2 AND 31,

Formulas used: Constants used:

N = nmn.mn ny = 2

C  =cn + e + iy ¢ = 10, ¢ = 3, =1

3 2 ]
Vo= g % s = 3.2028, s} = 0143, s} = .1103
nl nlnz n1n2n3
Cv = A/_—E X 100 % = 36.90
x
Number of— Expenditure Estimated Precision
Lots Cheeses Number of | Total Cost, Variance Claefficient,
Determina- | in dollars of mean af
tiong Variation

fia Ha N 4 V [

(1) (2} (3} {4) (5] (8}
5 3 30 125 0.6452 2. 18
5 2 20 100 0.6475 2.18
5 1 10 75 0.6544 219
1 3 24 100 0.8085 2,43
4 2 16 80 08094 2,44
4 1 8 60 08181 2.45
3 3 18 75 1.0753 2.581
3 2 12 60 1.0792 2 82
3 1 6 45 1.09a07 2 83
2 3 12 50 1.6130 3. 44
2 2 8 40 1.6188 345
2 1 4 30 1.6361 3.47
1 3 6 25 3.2259 4. 87
1 2 4 20 3.2375 4.88
1 1 2 15 3.2722 4.9%

the expenditure involved in determining it (columns 3 and 4). Column
3 shews the tofal number of determinations made, the total cost is
given in column 4, and column 6 compares the relative precision of
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the sample mean, indicated by its coefficient of variation, to the absalute
precision in terms of the varlance (colmmnn 5). Duplicate determina-
tions are used throughout. It can be seen that the 4-1-2 combination
is more economical than the 3-2-2 combination—the one used in the
preliminary experiment—since it obtains a higher precision but re-
quires the same cost, (60 doilars). Alsgo, the combination 3-2-2 is less
efficient than the combination 3-1-2 since, for the same precision, the
latter corbination needs half the number of determinations and re-
quires only 45 dollars instead of 60 dollars. In general, it pays to in-
crease the number of lots instead of the number of cheeses sinee the
former are more variable.

HEMARKS ON NESTED SAMPLING AS 4 SPECIAL CASE OF
MODEL TI ANALYSIS OF VARIANCE

The mathematical model of nested sampling as given by the funda-
mental equation (1) and its assumptions, is closely related to one
specific mathematical model used in analysis of variance. Two models
of analysis of variance, usually referred to as Model T and Model 1T,
have been digeussed recently by 8. L. Crump (3] and C. Eisenhart [5].
It seems worthwhile to show that, in virtue of the undetlying assump-
tions, nested sampling vepresents a special case of Model IT of analysis
of variance.

The two different models of analysis of variance involve the analysis
of two different types of factors: systematic factors in Model U and
random factors in Model TI. A factor such as “treatment’ or “lot”
is 2 random ar 4 systematic factor depending on the way its variants
are chogen, Here the term “variant” of a factor is used based on Fisher's
terminology [8], for instance, the variants of the factor “treatment’
may be e.g. “nitrogen’ and ‘“‘phosphate” and different lots the variants
of the factor “lot.” When an experimenter selects the two treatments
“nitrogen’” and “phosphate,’” he selects them systematically from a
population of possible freatments on the basis of subject matter jude-
ment; on the other hand, when selecting different lots of material for
studying the effects of the treatments, he generally bases his cholce on
random selection ([5], [10] Chapter 8). Since systematically chosen
variants produce systematic variation and randomly chosen variants
random. variation, the type of factor may be determined according to
the issue: systematic or random wvariation. Usually, “methods” and
“treatments” represent systematic factors, “blocks” and ‘“lots” random
factors, whereas factors such as ‘‘days' or “animals” or “locations’
may represent either systematic or random factors; both types of factor
will often oceur in the same experiment; then the model is a mixed ane.
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Now the factors encountered in nested sampling are the primary,
secondary, tertiary sampling units (lofs, cheeses;, determinations).
Under the assumptions made, the variants of these factors, ie. the
units selected at each level, were chosen randomly. These factors,
therefore, are random factors and thus nested sampling belongs to
Model T1.

In order to describe moare accurately the relationship of neated
sampling to Model IT of analysis of variance, we suhdivide the random
factors of Model I1 into two categories: cross clagsified™ with respect to
another {actor or not. For instance, in the 2 factor “‘day-animal”
experiment discussed by C. Eisenhart (5] as an example of Model IT,
the random factor “animal’ is cross classified with respect to the factor
“days,” each of the randomly chosen animals being tested on all days
(the analysis of variance table containg: “Between days"”, “Between
animals,” and “Residual” withd — 1, and a — 1, and (@ — 1}{d — 1)
degrees of freedom respectively). On the other hand, there would be
no cross classifieation, if on each day a number of animals were randomly
chosen for testing, as for instance in an inoculation experiment affecting
the sensitivity of the animal (the analysis of variance containg: “‘Be-
tween days,” and “Between animals within days” with d — 1, and
d{e — 1) degrees of freedom respectively). Likewise, no cross elassi-
fication would be involved for the random factor “animal” if each
animal would be tested on a eouple of days which were randomly
selected, as e.g. if only one animal eould be tested per day (the analysis
of variance contains: “Between animals,” and “‘Between days within
animals” with (¢ — 1}, and a{d — 1) degrees of freedom respectively).
Nested sampling represents the second category of Model 1T in which
the random factors involved are not crass classified since fov each
primary sampling unit a number of secondary sampling units is se-
lected randomly, and so on. The question as to which ovder of sub-
sampling should be adopted in the nested sampling procedure, as, for
instance, whether to use “animals” as primary sampling units and
“days” as secondary sampling units, or econversely, is a decision to be
made on the basis of subject matter judgment.

APPENDIX

We shall now derive the optimum values of the class frequencies,
given for the three-fold level by formulas (73, (8), (9), and (10), for
the general case of k-fold nested sampling. Instead of solving the prob-

0This term is not synenymous with “ordered. Nate that items in tabkie 2 below are arderad for
purely designative reasons there being neither a cross classification ror an element of ''sequence’
invalved.
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lem directly by introducing the Lagrange multiplier, we will apply
this procedure to a pair of generalized functions. We then obtain as
special cases the solution formulas for optimum allocation in
1. #-fold nested sampling
ii. k-fold nested sampling in which some class frequencies are fixed
heforehand
i stratified sampling from finite population (k strata, 2 levels).

a. Mintmum Problem for 2 Generalized Functions

Let the two generalized functions he

Fl(Nlj"‘JNk)z ZGL{N,;—FC&[ (11}
PoNy, oo, N = Z ¥ (12)
i=1
where N, , -+ -, N, denote variables and ¢, , @, , and a,; , a;; (7 = 1,

, k) are constants,
Consider first the problem to minimize F (N, , -+, N} subject to
the side condition

Fz(NH"'an):bz (13)

where b, 18 a constant. Using the Lagrange multiplier A in the usual
way, we let the derivatives of F, 4+ M\F, with respect toa N, (i = 1
, k) be zero, and ebtain

&1p — O\Gza:/Ni) =1

N, = \/i‘\/ﬁac/aru
Substituting these values of N, in (13), where F, is given by (12}, we have

H

or

FolNyy oo N = (174N 2 Ve + a = b,
Therefare
& _
Z’ \/ﬁuaz;

VA =

Henece we obtain the optimum values

bz_“ag

3
Z ‘\/a’lnah s
Ny = _52 \j & (14}

0%
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Similarly, we obtain the solution of the problem to minimize FL(N, ,
-, N,) subject to the side condition

FI(NI:“‘JN}.-.)zbl (15)

where b, 15 & constant:

Wy w20 o (16
Z \/al.'ara.' "

Now introduce the variables
m = N, n, = N./N,_ 6=2,-, k) {17)

then N, = n, «+ n{d = 1, --- , k). Substituting the new variables in
(11) and (12), we obtain the functions

%
Hlg, -, ny) = Z A A T (18)

i=l

k

fuln,, -, 0 = Z_"E'z;

il My e Ry

+ a, (19
Bubstituting (14) in (17), we find that the minimum solutions of f,(n, ,
., ;) under the side eondition fa(n, , < -+, %) = b, are:

&
Z \/al itlyg \/
i=1 €L
2

ai

n =
H b, — a. AL3%]

and (20)

gty s .
my = a2t g9
&y ile, i1

Similarly, substituting (16) in {17), we find the minimum sclutions of

fa(ny , « -+, gy under the side condition fy(n, , --- , n,) = by @
b —a aa
nil = L : : f
11
E ‘\/ﬂ'ruﬂza
i=k
and - (21)
Aaithy 11 .
oy = 4 = =92 ... .}
2 .\/cz.,-az‘,-_l v = 2, » k)

Note that ny; = n(d = 2, - -« | k).
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b. Application to Opiimum Allocation Problems in Sampling
i. Nested Sampling

Substituting a,; = ¢; , @ = ¢: and @, = a, = 0in (18) and (19), we
obtain the 2 functions

k
gl(nl sy ) E o R ) (22}
iot

i ._._9'_?__.,_ (23)

g?(nlx'“1ﬂ'k) ey
These funections represent the general case of the cost function C(n, | %, ,
#s) and the variance function V{n, , n, , 7.} used ahove in section 4.
Setting b, = ¢ and b, = v yields the corresponding side conditions.
Therefare applying formulas (20) and (21), we have as the minimum
solutions of ¢,(n, , <+, n,) under the side condition gu(n,, --- , n,) = v

, Z:I (J:\/é_a}

a
A = —
v e
and - (243
a; Ci_ .
nu:;\/_c‘__l z=12 -,k
and as the minirouum solufions of gy(n, , - - - , n,) under the side condition
gl(nll }nk) =¢
e = 7, €
1, = " =
— ¢
WNCRVARE
and (25)
T, LA .
ﬂzs=;__l\/_ci_l (1=2 -k

Specializing equations (24) and (25) to the case ¥ = 3 yields equa-
tions (7) and (8). Specializing equation {25) to the case b = 2 and
letting cost be expressed in terms of time, ¢, = ¥, ¢, = ¢, gives equation
1032 in L. H. C. Tippett's book (12].

. Nested Sampling with Some Prefized Class Frequencies

Let u{, -« , njr be the unknown frequencies and 7.y, , - -, m be
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fixed befarehand. The equations {22) and (23) may then be rewritten
in terms of n{ , -« , ni as follows:

¥—k
halng | -0y ni) = Zcin{ ERR I o AR Y Z Cperaflprgr =" " Ty
t=1

(26)

where =g (=1, — 1)
and -
Bk (27)
e = Cp Z Cir 4 Mty Torr 41
Iw]
A o 1 h—k o2 es
Ly o= L 7 - 7 =
hars ) 1) ,z=; e Hy t By v Rpe Aot Perwy 70t My
(28)
k! {2
= ) i
=1 7]
where et =a;(i=1, -« B =1}
and
s bt ﬂ'i ; (29)
2 2 — AL S
o o + ; ECTIS SR
Thus the functions 2, and A, of the variables #f, - - -, n,{; , given hy (26)
and (28), represent the same types of function as the functions ¢, and ¢, of
the variables #, , - - -, n, given by (22) and {23). Therefore the mini-
muroe solutions of A (n] , -+, #&) and h(nf, - -+, ni) under the side
conditions hu{ni , <+ , ni ) = vand hyinl, ---, n.) = ¢ respectively,

way be obtained from equations (24) and (25) by veplacing & by ¥ |
a by ¢, and ¢ by ¢/, and then substituting back ¢fand e} (7 = 1, - - , &)
from equations (27) and (29).

Fork = 3, I’ = 2 we obtain from (27) and (29)

el = ¢ € = € T
0_‘2

2 o4 3

gy = 4 7 = 6, + —
iy

The substitution of these values into (24) and (25) after replacement of
kyc, e by k', ', ¢ gives the farmulas (9) and (10) used above.

Note that the results of b. il. may also be obtained from a. and then
b. i. be considered as the special case k' = F.
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ii. Stratified Sampling from Finite Populations

We will indicate briefly the applicability of the ahove used general-
ized functions to stratified sampling involving two levels.

Let there be k strata in the population with M, elements #;; in the
ith stratum (¢ = 1, -+« [ k;§ =1, -+, M,). Assume that the N,
sample elements z; (¢ = 1, -+« , k;j = 1, -+, N,) are independently
drawn at random from the k finite strata. Then the sample mean

has the variance

where M = D _i., M, and o denotes the variance between elements in
the i-th stratum. Thus we have

&
ol = E%-PG

% Mol
where Gz;=mfg':“f)’ and G = Mz ZlM -1

Let ¢; be the cost per element in the i-th stratum and ¢ = >0, &N,
the total cost, then ¢ may be written ¢ = Zf,l a,.N; + a, where a,; = ¢;
and @, = 0. Thus ¢ and ¢; correspond to the functions ¥, (N, , -+ , N}
and Fy(Ny, - -+, N,) respectively in (11) and (12). Therefore equations
(14) and (16) give the desired minimum sclutions where b, and b, de-
fermine the side conditions corresponding to (13) and (15). In case the
populations in the strata are large (M, ~ M; — 1), we obtain the well
known optimum allocation formulas:

3
2 Mo gy

o 3 0 VO

i=]

Ny, =

bl .ﬂf sT g
. ~ —
5 Moo Y

i=1

N2;=
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